ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • ๊ณตํ†ต์ ์œผ๋กœ ์ž์ฃผ ๋“ฑ์žฅํ•˜๋Š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ
    scikit-learn 2025. 3. 24. 10:47

    โœ… ๐Ÿ“Œ ๊ณตํ†ต์ ์œผ๋กœ ์ž์ฃผ ๋“ฑ์žฅํ•˜๋Š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ

    ๋Œ€๋ถ€๋ถ„์˜ ๋ชจ๋ธ์—์„œ ์•„๋ž˜์™€ ๊ฐ™์€ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์ž์ฃผ ๋“ฑ์žฅํ•ฉ๋‹ˆ๋‹ค.

    1๏ธโƒฃ ๋ชจ๋ธ ๋ณต์žก๋„ ์กฐ์ ˆ ๊ด€๋ จ

    ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์˜๋ฏธ
    n_estimators ์•™์ƒ๋ธ” ๋ชจ๋ธ์—์„œ ๊ฐœ๋ณ„ ๋ชจ๋ธ(ํŠธ๋ฆฌ)์˜ ๊ฐœ์ˆ˜ (RandomForest, XGBoost ๋“ฑ)
    max_depth ํŠธ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์—์„œ ์ตœ๋Œ€ ๊นŠ์ด (Overfitting ๋ฐฉ์ง€)
    min_samples_split ๋…ธ๋“œ๋ฅผ ๋ถ„ํ• ํ•˜๊ธฐ ์œ„ํ•œ ์ตœ์†Œ ์ƒ˜ํ”Œ ๊ฐœ์ˆ˜ (์ž‘์„์ˆ˜๋ก ๋ณต์žกํ•ด์ง)
    min_samples_leaf ๋ฆฌํ”„ ๋…ธ๋“œ์— ํ•„์š”ํ•œ ์ตœ์†Œ ์ƒ˜ํ”Œ ๊ฐœ์ˆ˜
    max_features ๋…ธ๋“œ ๋ถ„ํ•  ์‹œ ๊ณ ๋ คํ•  ์ตœ๋Œ€ ํŠน์ง• ๊ฐœ์ˆ˜

    2๏ธโƒฃ ์ •๊ทœํ™” ๋ฐ ๊ทœ์ œ ๊ด€๋ จ (Overfitting ๋ฐฉ์ง€)

    ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์˜๋ฏธ
    alpha Lasso/L1 ๊ทœ์ œ ๊ณ„์ˆ˜ (๊ฐ’์ด ํด์ˆ˜๋ก ๊ฐ•ํ•œ ์ •๊ทœํ™”)
    lambda Ridge/L2 ๊ทœ์ œ ๊ณ„์ˆ˜
    learning_rate XGBoost, LightGBM ๋“ฑ์—์„œ ํ•™์Šต ์†๋„ ์กฐ์ ˆ
    subsample ํŠธ๋ฆฌ ๋ชจ๋ธ์—์„œ ๋ฐ์ดํ„ฐ ์ƒ˜ํ”Œ๋ง ๋น„์œจ (๊ณผ์ ํ•ฉ ๋ฐฉ์ง€)

    3๏ธโƒฃ ์ตœ์ ํ™” ๋ฐ ํ•™์Šต๋ฅ  ๊ด€๋ จ

    ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์˜๋ฏธ
    learning_rate ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•(Gradient Descent) ํ•™์Šต๋ฅ 
    batch_size ๋”ฅ๋Ÿฌ๋‹์—์„œ ๋ฐฐ์น˜ ํฌ๊ธฐ
    momentum SGD์—์„œ ๊ธฐ์šธ๊ธฐ ์ด๋™ ํ‰๊ท  ์กฐ์ ˆ
    optimizer Adam, SGD, RMSprop ๋“ฑ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ ํƒ

    โœ… ๐Ÿ“Œ ๋ชจ๋ธ๋ณ„ ์ฃผ์š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ์ •๋ฆฌ

    ๋ชจ๋ธํ•ต์‹ฌ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ
    ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ (RandomForest) n_estimators, max_depth, min_samples_split, min_samples_leaf, max_features
    XGBoost n_estimators, max_depth, learning_rate, subsample, colsample_bytree, gamma
    LightGBM num_leaves, learning_rate, n_estimators, max_depth, min_data_in_leaf, feature_fraction
    ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€ (Logistic Regression) C (๊ทœ์ œ ๊ฐ•๋„), penalty (L1/L2), solver
    ๋ฆฟ์ง€ & ๋ผ์˜ ํšŒ๊ท€ (Ridge/Lasso) alpha (๊ทœ์ œ ๊ฐ•๋„)
    ์‹ ๊ฒฝ๋ง (MLP, ๋”ฅ๋Ÿฌ๋‹) learning_rate, batch_size, hidden_layers, activation

    โœ… ๐Ÿ“Œ ๊ฒฐ๋ก 

    • ๋ชจ๋“  ๋ชจ๋ธ์—์„œ ์ž์ฃผ ๋“ฑ์žฅํ•˜๋Š” ๊ณตํ†ต์ ์ธ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋งŽ์Œ.
      (์˜ˆ: n_estimators, max_depth, learning_rate, alpha ๋“ฑ)
    • ํ•˜์ง€๋งŒ ๋ชจ๋ธ๋ณ„๋กœ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋‹ค๋ฆ„.
      (์˜ˆ: XGBoost๋Š” subsample, ์‹ ๊ฒฝ๋ง์€ hidden_layers ๋“ฑ)
    • ๊ฒฐ๊ตญ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ ์‹œ, ๋ชจ๋ธ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”! ๐Ÿš€

    ๐Ÿ”ฅ ํŠœ๋‹ํ•  ๋•Œ ์ค‘์š”๋„ ๋†’์€ ๊ฒƒ๋ถ€ํ„ฐ ์กฐ์ •ํ•˜๋Š” ๊ฒŒ ํšจ์œจ์ !

Designed by Tistory.